3rd edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Turin, September 21-22, 2023 Starhotels Majestic Scientific board: Marco Ladetto (Alessandria) Umberto Vitolo (Candiolo-TO)

Potential opportunities to overcome resistance to CAR-T therapy in diffuse large B-cell lymphoma

Stephen J. Schuster, M.D.

Professor of Medicine Perelman School of Medicine of the University of Pennsylvania Director, Lymphoma Program & Lymphoma Translational Research Abramson Cancer Center of the University of Pennsylvania

CAR-T

S. J. Schus<u>ter</u>

Disclosures of Stephen J. Schuster

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						х	
AstraZeneca						х	
BeiGene						x	
Caribou Biotech						x	Steering committee
Fate Therapeutics							Chair DSMB
Genentech/Roche	х					x	Steering committee
Genmab	х					x	Steering committee
Incyte/Morphosys						x	Honoraria for presentation
Kite Pharmaceuticals						x	
Legend Biotech						x	Steering committee
Novartis						x	Steering committee
Mustang Biotech						x	
Nordic Nanovector						x	Steering committee
Takeda							Honoraria for presentation

S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

CAR-T S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

CAR-T S. J. Schuster

- Roughly 1/3 of patients with relapsed or refractory large B-cell lymphomas achieve long-term remissions with commercially available CAR-T products as 3rd-line therapy
- 2/3 of patients fail to achieve durable responses

Axicabtagene ciloleucel ¹	Tisagenlecleucel ²	Lisocabtagene maraleucel ³
ZUMA-1 ¹ : axi-cel as ≥ 3rd-line therapy for LBCL N = 101 Median follow-up: 63.1 months Estimated 5-year EFS: 30.3%	JULIET ² : tisa-cel as > 3rd-line therapy for LBCL N = 115 Median follow-up: 40·3 months Estimated 40-month PFS:~30%	TRANSCEND ³ : liso-cel as ≥ 3rd-line therapy LBCL N = 256 Median follow-up: 12.3 months Estimated 18-month PFS: 42.1%
100 100 100	100 90- 90- 90- 90- 90- 90- 90- 9	200 9 9 9 9 9 9 9 9 9 9 9 9 9

¹Neelapu SS, et al. Blood. 2023;Epub ahead of print; ²Schuster SJ, et al. Lancet Oncol 2021;22(10):1403-1415; ³Abramson J, et al. Lancet. 2020;396(10254):839-852.

S. J. Schuster

• Earlier administration of CAR-T as 2nd-line of therapy may provide an additional 10% EFS benefit

¹Locke FL, et al. N Engl J Med. 2022;386(7):640-654; ²Abramson, et al. Blood. 2023; 141(14):1675-1684.

CAR-T S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to CAR-T

Best response and outcome

- Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

Schuster SJ, et al. N Engl J Med. 2019;380(1):45-56.

S. J. Schuster

^{3rd} edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T S. J. Schus<u>ter</u>

- Disease status at the time of LD-CAR-T and its impact on outcome
 - Data from the BELINDA trial: tisagenlecleucel vs SOC

 Multivariate Logistic Regression Model for Post-Infusion Best Overall Response (CR/PR vs SD/PD/UNK) in Arm A (second-line CAR-T)

 Odds Ratio Estimates

 Variable
 Point Estimate
 95% Wald Confidence Limits

 CR/PR before infusion vs.
 7.75
 3.23
 18.62

 SD/PD before infusion at mean cell dose
 7.75
 3.23
 18.62

The odds ratio is the odds of having a best overall response of CR/PR vs. SD/PD/UNK; *i.e.*, an odds ratio >1 means patients are more likely to have a best overall response of CR/PR.

EFS time is relative to date of tisagenlecleucel infusion; median time from pre-infusion disease assessment to infusion was 10 days (range, 2-57; Q1-Q3, 8-15). EFS events defined as PD/SD after day 71 from randomization or death at any time.

Bishop et al. N Engl J Med. 2021 Dec 14. Epub

^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T

• Lab studies independently prognostic of response to CAR-T

- Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

Univariable Factors Analyzed

- LDH (≤1 × ULN vs >2 × ULN)
- LDH (>1-2 × ULN vs >2 × ULN)
- CRP (high vs low/normal)
- Platelets at baseline (grade 0–2 vs grade 3/4)
- Lymphocytes before LD chemo. (grade 3/4 vs grade 0)
- Lymphocytes before LD chemo. (grade 1/2 vs grade 0)
- Ferritin (high vs low/normal)
- ECOG PS (0 vs 1)
- Age group (<65 years ≥65 years)
- Metabolic tumor volume (<100 vs ≥100 mL)
- IPI risk (≥2 vs <2 risk factors)
- IFNγ
- IL10
- IL12
- P70
- IL6
- IL8
- IL13
- TNFα

Multivariable analysis				
Predictive Factors from Univariable Analysis	Responders/Patients	Odds Ratio (95% CI)		
LDH				
≤ x ULN	29/55	2 74/0 71 10 56)		
>2 x ULN	4/21	2.74 (0.71-10.56)		
>1 - 2 x ULN	11/39	0.07(0.22.4.00)		
>2 x ULN	4/21	0.97 (0.23-4.06)		
Thrombocytopenia				
CTCAE grades 0 - 2	43/99	7 22 (0 84 (2 21)		
CTCAE grades 3 - 4	1/16	7.23 (0.84-82.31)		

• Lab analytes are defined as the closest time before or on the day of infusion

- 93% of values fell on the day of infusion

- Thrombocytopenia: grade 4, <25; grade 3, 25-50; grade 2, 50-75; grade 1, 75-LLN \times $10^9/L$

^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T S. J. Schuster

• Lab studies independently prognostic of outcome to CAR-T

- Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

CAR-T S. J. Schuster

• Tumor bulk and its impact on response ("size matters") - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-1415.

CAR-T

S. J. Schuster

Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-1415.

CAR-T S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

S. J. Schuster

• Is cyclophosphamide/fludarabine required for lymphodepletion?

ORIGINAL ARTICLE

Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas

G. Ghilardi^{1,2,3†}, E. A. Chong^{1,2,3†}, J. Svoboda^{1,2,3}, P. Wohlfarth⁴, S. D. Nasta^{1,3}, S. Williamson⁵, J. D. Landsburg^{1,3}, J. N. Gerson^{1,3}, S. K. Barta^{1,2,3}, R. Pajarillo^{1,2,3}, J. Myers⁵, A. I. Chen⁵, L. Schachter⁵, R. Yelton^{1,2}, H. J. Ballard^{1,3}, A. Hodges Dwinal⁵, S. Gier^{2,3}, D. Victoriano^{2,3}, E. Weber^{1,3}, E. Napier^{1,3}, A. Garfall^{2,3}, D. L. Porter^{1,3}, U. Jäger⁴, R. T. Maziarz⁵, M. Ruella^{1,2,3†} & S. J. Schuster^{1,2,3*†}

³Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia; ²Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia; ³Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, USA; ⁴Medical University of Vienna, Division of Hematology and Hemostaseology, Department of Medicine I Wien, Comprehensive Cancer Center, Vienna, Austria; ⁵Oregon Health & Science University Knight Cancer Institute, Adult Blood and Marrow Stem Cell Transplant & Cell Therapy Program, Portland, USA

S. J. Schuster

ORIGINAL ARTICLE

Bendamustine is safe and effective for lymphodepletion

- Retrospective comparison of fludarabine/cyclophosphamide and bendamustine as lymphodepletion prior to tisagenlecleucel
- University of Pennsylvania; Oregon Health & Science University; University of Vienna
- Bendamustine, n = 90; Fludarabine/Cyclophosphamide, n = 42; patient characteristics balanced between LD as shown below

Characteristics	Total population N = 132 (100%)	Flu/Cy n = 42 (31.8%)	Benda n = 90 (68.2%)	ρ	Characteristics	Total population N = 132 (100%)	Flu/Cy n = 42 (31.8%)	Benda n = 90 (68.2%)	ρ
Sex Female	50 (37.9%)	16 (38.1%)	34 (37.8%)	0.072	No. of previous lines of therapy (median [IQR])	3 [3-4]	3 [2-4]	3 [3-4]	0.569
Male	82 (62.1%)	26 (61.9%)	56 (62.2%)	0.972	Serum LDH (N=131)				
Age at infusion (median – [IQR])	65 [56-70]	67 [56-73]	65 [56-70]	0.222	Normal Elevated	68 (51.9%) 63 (48.1%)	20 (47.6%) 22 (52.4%)	48 (53.9%) 41 (46.1%)	0.500
Diagnosis					Pre-LD CRP (N=54)				
DLBCL NOS	66 (50.0%)	27 (64.3%)	39 (43.3%)		Normal	34 (63.0)	13 (65.0)	21 (61.8)	
HGBCL NOS	5 (3.8%)	1 (2.4%)	4 (4.4%)		Elevated	20 (37.0)	7 (35.0)	13 (38.2)	0.812
tFL	47 (35.6%)	12 (28.6%)	35 (38.9%)	0.128	Pre-LD Ferritin (N=52)				
HGBCL with MYC + BCL2					Normal	28 (53.8)	11 (55.0)	17 (53.1)	0.005
and/or BCL6	14 (10.6%)	2 (4.8%)	12 (13.3%)		Elevated	24 (46.2)	9 (45.0)	15 (46.9)	0.895
rearrangements					Bulky disease (>10cm)				
ECOG PS					No	119 (90.2%)	36 (85.7%)	84 (92.2%)	
0-1	124 (93.9%)	39 (92.9%)	85 (94.4%)	0.722	Yes	13 (9.8%)	6 (14.3%)	7 (7.8%)	0.242
≥2	8 (6.1%)	3 (7.1%)	5 (5.6%)		Bridging therapy				
Renal function					No	27 (20.5%)	11 (26.2%)	16 (17.8%)	0.264
Normal	108 (81.8%)	32 (76.2%)	76 (84.4%)	0 252	Yes	105 (79.5%)	31 (73.4%)	74 (82.2%)	0.204
Reduced	24 (18.2%)	10 (23.8%)	14 (15.6%)	0.202					
Previous ASCT									
No	104 (78.8%)	31 (63.8%)	73 (81.1%)	0 220					
Yes	28 (21.2%)	11 (26.2%)	17 (18.9%)	0.339					

Ghilardi G, et al. Ann Oncol. 2022;S0923-7534(22)01722-7.

CAR-T S. J. Schuster

ORIGINAL ARTICLE

Bendamustine is safe and effective for lymphodepletion

Ghilardi G, et al. Ann Oncol. 2022;S0923-7534(22)01722-7.

Bendamustine lymphodepletion is a well-tolerated alternative to fludarabine and cyclophosphamide lymphodepletion for axicabtagene ciloleucel therapy for aggressive B-cell lymphoma

Shin Yeu Ong^{1,2} Stacy Pak³ | Matthew Mei¹ Yan Wang⁴ | Leslie Popplewell¹ | John H. Baird¹ Alex F. Herrera¹ Geoffrey Shouse¹ | Liana Nikolaenko¹ | Jasmine Zain¹ James Godfrey¹ | Myo Htut¹ | Ahmed Aribi¹ | Ricardo Spielberger^{1,5} | Joshua Mansour^{1,5} | Stephen J. Forman¹ | Joycelynne Palmer⁴ | Lihua E. Budde¹ ^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T S. J. Schuster

 Patients receiving bendamustine relative to Flu/Cy followed by axi-cel had comparable efficacy and lower any grade ICANS

Toxicity	bendamustine	Flu/Cy
any grade / grade ≥3 CRS	89% / 3.7%	86% / 4.8%
any grade ICANS / grade ≥3 ICANS	30% / 19%	55% / 31%
grade ≥3 neutropenia	68%	100%

Response rates

Progression-free survival

Overall survival

CAR-T S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

CAR-T S. J. Schuster

• Functional T Cell Subsets Determine CAR T Cell Responses

CD27⁺ CD45RO⁻ (memory phenotype) CD8⁺ T cell content in CLL *patients' leukapheresis products* and response

Genomic evaluation of CLL patient-derived CAR T cells

CR, complete remission; PR_{TD} , partial remission with late relapse of transformed disease; PR, partial response; NR, no response

Fraietta, et al. Nat Med 2018; 24:563-571.

CAR-T S. J. Schuster

<u>Outline</u>

- Background: the unmet need
- Optimizing patient characteristics
- Optimizing lymphodepletion
- Optimizing CAR-T product characteristics
- Overcoming tumor-specific mechanisms of resistance

CAR-T S. J. Schuster

• Early CTL019 efficacy data: Penn and CHOP

- Determinants of success or failure are probably disease-specific

Disease	Ν	CR rate	Median DOR	Median Follow-Up
r/r ALL ¹	75	81%	Not Reached	13.1 mo (2.1-23.5)
r/r FL ²	14	71%	Not Reached	28.6 mo (3.5-37.9)
r/r DLBCL ²	14	43%	Not Reached	46.8 mo (6.0-54.6)*
r/r CLL ³	14	29%	40.0 mo (21.0-53.0)	19.0 mo (6.0-53.0)

*Data updated December 2018

¹Maude S, et al. NEJM. 2018;378(5): 439-448; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, et al. Sci Transl Med. 2015; 7(303): 1-12.

^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T S. J. Schuster

Putative mechanisms of tumor resistance to CAR T cells in DLBCL

CD19 antigen loss

• acquired mutations and alternative splicing of CD19 (Sotillo...Thomas-Tikhonenko Cancer Disc. 2015)

T-cell exhaustion/hypofunction

- mediated by inhibitory CAR T receptors and ligands on in tumor microenvironment
- peripheral self-tolerance (B cell recovery? late relapses?)
- TME-induced T cell hypofunction (reversible)

Intrinsic tumor resistance

- loss of death receptor signaling molecules causes resistance to CAR T in vitro + in vivo
- failed CAR T assoc./w lower death receptor-assoc. gene expression by tumor cells (Singh, et al. Cancer Disc. 2020)

Insufficient T-cell infiltration

- T cells paralysis
- physiologic factors (high interstitial fluid pressure, hypoxia, pH)

S. J. Schu<u>ster</u>

• Mechanisms of CAR-T failure: CD19 loss or downregulation

Disease	Ν	CD19 loss at PD
ALL ¹	30	3/7
FL + DLBCL ²	28	1/5
CLL ³	14	0/10

• Penn and CHOP Data

• More responsive diseases seem more likely to fail as a result of CD19 loss

• Less responsive diseases, like CLL, require alternative explanations

¹Maude S, et al. NEJM. 2014; 371(16): 1507-1517; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, personal communication 2018 Mar 12.

CAR-T S. J. Schuster

• JULIET: Response rates vs tumor CD19 expression by IHC

• No Difference

Table S12. Best Overall Response and Relative Expression Levels of CD19

Response Rate	Patients (N = 72)		
	CD19 Positive (N=49)	CD19 Negative/Low Expression (N=24)	
CR, n	20	7	
PR, n	4	5	
Best ORR, % (95% CI)	49% (34-64)	50% (29-71)	

Patients were classified as CD19 positive if they had an AQUA score ≥10,000. Patients with an AQUA score <10,000 were considered CD19 low/negative.

CAR-T S. J. Schuster

• Inhibitory protein expression vs response to CAR-T (DLBCL)

Penn 13413 Trial: - Increase in checkpoint expression at baseline in non-responders (~ 2/10)

- Increase in checkpoint expression at disease progression (~ 2/5)

Complete Response 13413-01 13413-21 13413-06 13413-12 13413-17 preprepreprepre-CART19 CART19 CART19 CART19 CART19 100 L BM LN BM LN BM LN BM LN BM LN

Figure 3 : Immune-checkpoint analysis in serial lymph node and bone marrow samples from patients with DLBCL. LAG3, PD1, PD-L1, TIM3 immunohistochemical (IHC) expression and quantitative analysis based on biomarker expression in both non-tumor (immune cells) and lymphoma cells by patient and clinical response.

Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554.

CAR-T

S. J. Schuster

• ZUMA-1: Tumor CD19 and PDL-1 expression at progression by IHC (DLBCL)

- Post-progression tumor biopsies (21 evaluable patients)
 - 33% were CD19- by IHC at progression by central review (7/21)

- 62% were PD-L1+ at progression by central review (13/21)

- CD19 H-score of 0 was determined negativity. H-scores ≥ 1 were considered positive. H-score was calculated as a product of IHC intensity (scale 1-3) multiplied by the percentage of tumor cells at a given intensity (0-100%).
- PD-L1 status was determined by the percentage of tumor cells with any membrane staining above background or by the percentage of tumor-associated immune cells with staining at any intensity above background.

IHC, immunohistochemistry; N/E, not evaluable; PD-L1, programmed cell death-ligand 1.

Neelapu et al. ASH 2017. Abstract 578.

CAR-T S. J. Schus<u>ter</u>

Active and upcoming clinical trials at UPenn addressing tumor-specific mechanisms of resistance to CAR-T

CD19 antigen loss	T-cell exhaustion and hypofunction	Intrinsic tumor resistance	Insufficient T-cell infiltration
Phase II study of dual targeting of CD19 and CD20 antigens using CD19- directed CAR-T cells followed by CD20-BsAb NCT04889716 • Recruiting PI: E. Chong	Phase I trial of interleukin-18 secreting anti- CD19 CAR-T cells for r/r CD19+ lymphomas and CLL [huCART19-IL18 cells] NCT04684563 • Recruiting PI: J. Svoboda CD19-directed KIR-CAR/DAP12-modified cells for CD19+ lymphomas • Pre-clinical studies completed* *Wang, et al. Cancer Imm Res 2015; 3:815 • Clinical trial planned PI: S. Schuster	Venetoclax-resistant CAR T cells engineered to express mutated BCL- 2(F104L) for combination therapy of lymphomas • Pre-clinical studies completed* *Lee, et al. Cancer Discov 2022; 12:2372 • Clinical trial planned PI: M. Ruella	Under non-disclosure agreement

CAR-T S. J. Schus<u>ter</u>

Active UPenn clinical trial addressing CD19 antigen loss or downregulation

Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD3ζ CAR-T Cells Followed by Mosunetuzumab or Glofitamab in Relapsed or Refractory DLBCL or Transformed FL

Rationale:

Early administration of CD20:CD3 bispecific antibodies (mosunetuzumab or glofitamab) after CD19-directed CAR-T cell therapy may enhance tumor cytotoxicity by:

- synergistic or additive B cell cytotoxicity via simultaneously targeting two different B cell (tumor) antigens, i.e., CD19 and CD20
- reducing CD19-negative tumor cell escape by targeting a second B cell antigen
- enhancing in vivo expansion of CAR T cells, as observed for T cells in general, after bispecific T cell engaging antibody exposure

ClinicalTrials dov Identifier: NCT04889716

Potential opportunities to overcome resistance to CAR-T

S. J. Schuster

• Active UPenn clinical trial addressing CD19 antigen loss or downregulation

Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD3ζ CAR-T Cells Followed by Mosunetuzumab or Glofitamab in Relapsed or Refractory Diffuse Large B-cell or Transformed Follicular Lymphomas: NCT04889716

on nod ma	
Recruitme First Post	ent Status 17, 2021
Study Type 1 :	Interventional (Clinical Trial)
Estimated Enrollment ():	42 participants
Allocation:	Non-Randomized
Intervention Model:	Sequential Assignment
Intervention Model Description:	Cohort 1 subjects will receive mosunetuzumab. Pending demonstrated safety of cohort 1, the trial will progress to cohort 2, in which subjects will receive glofitamab with
	obinutuzumab.
Masking:	None (Open Label)
Primary Purpose:	Treatment
Official Title:	Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD3ζ CAR-T Cells Followed by Mosunetuzumab or Glofitamab in Relapsed
	or Refractory Diffuse Large B-cell or Transformed Follicular Lymphomas
Actual Study Start Date ():	November 5, 2021
Estimated Primary Completion Date ():	December 31, 2023
Estimated Study Completion Date 1 :	December 31, 2025

^{3rd} edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T

• Active UPenn clinical trial addressing T cell exhaustion

Phase I Trial of huCART19-IL18 Cells in Patients With Relapsed or Refractory CD19+ Cancers

Rationale: to utilize IL-18 as a pro-inflammatory cytokine to:

- enhance CAR T cell proliferation
- recruit additional immune cells into the TME to mediate antitumor effects toward tumor cells resistant to CAR T cells
- mitigate the potential impact of CAR T cell exhaustion

ClinicalTrials.go	v ID 🕻	NCT04684563 Sponsor 🕕 University of Pennsylvania
Brief Summary		The purpose of this study is to find the maximum dose of huCART19-IL18 cells that is safe for use in humans with CD19+ cancers.
Detailed Description		Cohort A: Non-Hodgkin Lymphoma (NHL) Cohort B: Chronic Lymphocytic Leukemia (CLL) Cohort C: Acute Lympholastic Leukemia (ALL)
Study Type	ICMJE	Interventional
Study Phase	ICMJE	Phase 1
Study Design	ICMJE	Allocation: Non-Randomized Interventional Model: Parallel Assignment Masking: None (Open Label) Primary Purpose: Treatment
Condition	ICMJE	Chronic Lymphocytic Leukemia Non-hodgkin Lymphoma Acute Lymphoblastic Leukemia
Recruitment Status	ICMJE	Recruiting
Enrollment (Estimated) (Submitted: 2023-03-30)	ICMJE	72
Original Enrollment (Estim (Submitted: 2020-12-21)	iated) ICMJE	30
Study Start Date (Actual)	ICMJE	2021-05-06

huCART19-IL18

CAR-T S. J. Schus<u>ter</u>

Planned UPenn clinical trial addressing T cell exhaustion or hypofunction

CD19-directed KIR-CAR/DAP12-modified cells for CD19+ lymphomas

<u>Rationale</u>: KIR-CAR/Dap12 expressing CAR T cells have potent *in vivo* antitumor activity that is resistant to the tumor- and/or TME-induced T-cell hypofunction observed with CD3ζ-based CAR T cells¹. This potent activity *may* be of benefit in large B-cell lymphomas with bulky disease.

¹Moon, et al. Clin Cancer Res 2014;20:4262–73. ²Wang, et al. Cancer Imm Res 2015;3:815-826. (*data show on the right*)

Planned UPenn clinical trial addressing intrinsic tumor resistance to CAR-T

Venetoclax-resistant CAR T cells engineered to express mutated BCL-2(F104L) for combination therapy of lymphomas

<u>Rationale</u>: BCL-2 <u>overexpression in CAR T cells</u> and <u>inhibition in tumor cells</u> enhances CAR T cell efficacy in pre-clinical models by reducing apoptosis in CAR T cells and enhancing apoptosis in cancer cells. Thus, combination venetoclax and CAR T cell therapy is a compelling approach for B-cell lymphomas failing standard CAR T therapy.

¹Lee, et al. Cancer Disc 2022;12:2372–91.

S. J. Schuster

^{3rd}edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Potential opportunities to overcome resistance to

CAR-T S. J. Schuster

Grazie / Thanks!

Domande / Questions?